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ABSTRACT
Ropes are an immutable data structure for representing character
strings via a binary tree of operation-labeled nodes. Ropes were
designed to perform well with large strings, and in particular, con-
catenation of large strings. We present our findings in using ropes
to implement mutable strings in TruffleRuby, an implementation
of the Ruby programming language using a self-specializing ab-
stract syntax tree interpreter and dynamic compilation. We extend
ropes to support Ruby language features such as encodings and
refine operations to better support typical Ruby programs. Finally,
we evaluate the performance of our implementation of ropes and
demonstrate that they perform 0.9× – 9.4× as fast as byte array-
based strings in benchmarks of common Ruby string operations.
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1 INTRODUCTION
Strings of characters are one of the most frequently used data types
in general purpose programming languages. Providing a textual
representation of natural language, strings are a useful type for
interacting with users at I/O boundaries. They are often used for in-
ternal operations as well, particularly where program identifiers are
conveniently represented as strings, such as in metaprogramming.

The predominant string representation is as a thin veneer over
a contiguous byte array. Consequently, the runtime performance
of string operations in such systems follows that of a byte array.

The Cedar programming language [9] introduced ropes [1] as an
alternative string representation in order to improve performance
of string operations over large strings. In this paper, we use ropes
to represent the mutable and encoding-aware strings of the Ruby
programming language. We add metadata to each rope to specialize
string operations based on both the structure and the properties
of the input ropes, such as byte and character length, fixed- vs.
variable-width encodings, ASCII-only characters, etc.

In summary, this paper makes the following contributions:
• We enhance the ropes data structure to be encoding-aware
and use it to implement Ruby’s mutable string type.
• We show how metadata from our enhanced ropes can be
used to specialize & optimize string operations, being of
particular benefit for strings with multi-byte characters.
• We introduce a new rope type to represent Ruby’s repeating
string operation, lazily.
• We show how string comparisons can be optimized with
ropes, notably for Ruby’s meta-programming operations.
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2 BACKGROUND
Wefirst discuss traditional string representations and ropes in detail,
along with the complications introduced by multi-byte characters.
We then present the semantics of Ruby’s strings. Finally, we intro-
duce our execution environment: TruffleRuby.

2.1 String Representation
The classical representation of strings is as an array of bytes with an
optional terminal character. These strings require contiguous mem-
ory cells and optimize for compactness. Consequently, they have
the same advantages arrays have, such as constant-time element
access and data pre-fetching.

The byte array representation is not well-suited for all applica-
tions, however. Requiring contiguous memory may prevent allo-
cations if a free block cannot be found. Additionally, operations
that require byte copying, such as string concatenation, may lead
to excessive memory fragmentation and suboptimal performance
if done repeatedly. Finally, in some languages such as Java, the
length of an array may have an upper-bound that is smaller than
addressable memory, placing a limit on the length of a string.

2.2 Ropes
Ropes [1] are a persistent [6] and immutable data structure that
can be used as an alternative implementation of strings. They were
designed for the Cedar programming language [9], with the explicit
goal of improving runtime performance over large strings. They
were inspired by other immutable string representations, but intro-
duced the efficient sequencing of operations by representing them
as operation-labeled nodes linked together in a binary tree.

Since ropes are chained together via pointers, the upper-bound
on the length of a rope is the total amount of addressable memory.
Moreover, the nodes in a rope do not need to reside in contiguous
memory. The price of this flexibility is a heavier base data struc-
ture. Depending on the application, however, it may be possible to
recuperate that cost via de-duplication, as the immutable nature
of ropes means they can be reused by the runtime. Beyond the
additional overhead of the data structure, ropes suffer from some
inefficiencies that mutable byte arrays do not. In the pathological
case of transforming each character in a string, the rope would
devolve into a linked list with one node per character. The Cedar
environment employed heuristics to recognize a handful of such
problematic usage patterns and provide specialized operations for
them.

While Cedar ropes did provide limited compatibility with their
traditional string type, called text, they were two distinct types;
any usage of ropes was a deliberate decision by the programmer.
We are unaware of any system developed since that has a rope-like
representation exposed as a core data type. More commonly, lan-
guages such as a Java, provide different types for immutable strings
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(String) and mutable buffers (StringBuilder), but they are both
flat representations. Rather than introduce ropes as a competing
data type, we consider their viability as an implementation strategy
for Ruby strings.

2.3 Encodings
Encodings provide a mapping from a sequence of bytes to a set of
characters. The byte array representation of strings is optimized
for characters that can be represented within the space of a single
byte, such as with the ASCII encoding. For modern encodings such
as UTF-8, which defines its set of characters with byte sequences
of varying width, a simple byte-oriented representation such as in
C’s strings or in Cedar’s ropes loses many of its advantages. E.g.,
looking up a character is no longer a simple array reference; the
individual character bounds must be calculated and a multi-byte
sequence may be returned. Modern string implementations must
work well with non-ASCII encodings.

2.4 Ruby
Ruby [12] is an object-oriented, dynamically-typed programming
language. In contrast to many languages, it featuresmutable strings
as a core data type and supports multilingualization (m17n), which
means each string has an associated encoding. Multiple encodings
can be loaded and in use within the same process. Ruby strings also
serve as the language’s byte array type via a special binary encod-
ing. Due to its rich features, such as metaprogramming, versatile
collections [10], and a pure object-oriented design, Ruby has been
an attractive target for language implementors and researchers.

2.5 TruffleRuby
TruffleRuby [16] is a high-performance implementation of Ruby
written as a self-optimizing AST interpreter on top of the Truffle
language implementation framework [21]. To achieve peak per-
formance, TruffleRuby must be paired with GraalVM [19, 20] – a
convenient distribution that bundles together OpenJDK and the
Graal dynamic compiler.

TruffleRuby achieves much of its performance via specialized
implementations of core Ruby methods. Most often these special-
izations are based upon argument types so that polymorphic calls
can be distilled down to their constituent cases without incurring
the overhead of unused code paths. However, it can also specialize
on attributes associated with values. In our implementation, the
various rope cases are distinct types allowing for type specializa-
tion, but they also track metadata that we can specialize on, such
as character width. Being able to specialize on both structure and
data allows us to tailor the code generated for each call site.

3 IMPLEMENTATION
Our implementation of ropes (Fig. 1) consists of an abstract base
Rope class and subclasses for the lazy string concatenation (Concat-
Rope), lazy substring (SubstringRope), and lazy string repetition
(RepeatingRope) operations. We also have an abstract LeafRope,
which represents the root of the leaf rope hierarchy. In a depar-
ture from Cedar’s ropes, our ropes codify string encoding infor-
mation in the leaves. Thus, we have leaves for ropes encoding

Rope ConcatRope

SubstringRope

RepeatingRope

LeafRope AsciiOnlyLeafRope

ValidLeafRope

InvalidLeafRope

Lazy
Operations

Encoding
Information

Figure 1: TruffleRuby’s rope class hierarchy. LeafRope subclasses
are split by the rope’s character encoding.

ASCII-only characters (AsciiOnlyLeafRope), for ropes represent-
ing valid multibyte characters (ValidLeafRope), and for ropes with
invalid byte sequences for the rope’s encoding (InvalidLeafRope).

Our ropes store metadata useful for both Ruby language seman-
tics and optimization of strings operations. Each rope stores the
encoding and code range (detailed below), as well as a single-byte op-
timizable flag, to guide optimizations of string operations. We also
store the byte length and character length, along with the Ruby-level
hash code, for the string represented by the rope.

In another departure from Cedar’s ropes, we never employ recur-
sion to traverse the tree. Truffle’s partial evaluator does not work
well with unbounded recursion, so we have opted to use an itera-
tive treewalk where necessary. Removing recursion means some
of the heuristics Cedar employed to limit tree depth are no longer
necessary. While an iterative treewalk requires the allocation of
a stack of nodes to track position, it can be heap allocated so its
growth is not much of a concern. Recursive walks, on the other
hand, must limit tree depth in order to manage the call stack size.
As we are not concerned with depth, we have also eliminated tree
rebalancing to make concatenation a constant time operation. The
trade-off is character retrieval by index may degrade to a linked list
if the tree is extremely unbalanced.

3.1 Specializations
Efficient implementation of string operations is an important con-
tributing factor to the overall performance of many language run-
times. The choice of string encoding can drastically impact the
runtime complexity of those operations. Without careful consider-
ation, supporting multiple encodings can result in operations that
are only as fast as the slowest encoding allows.

While a runtime may support a wide array of encodings (Truf-
fleRuby ships with 101 different encodings), in practice many appli-
cations use a small subset of those encodings. Moreover, applica-
tions quite often only use encodings that are compatible with each
other (i.e., they support conversion from one to the other without
reinterpretation of the underlying bytes). Compatible encodings
can often be treated as a homogeneous type for the purposes of
optimization.

By specializing our operations on both the structure and the
content of ropes, we are able to avoid any slow paths associatedwith
encodings, or classes of encodings, not used so far for that operation.
Should a previously unseen encoding, or class of encodings, be
encountered, we deoptimize [8] and transition to a more generalized
form of the operation that provides correct functionality for the
entire set of observed encodings. We limit the performance impact
of heterogeneous classes of encodings to appropriate call sites by
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method cloning [5]. When cloned, a string operation specializes to
only the runtime values passed to it at that specific call site.

Due to the importance of adequately handling string encodings,
we have extended ropes to encode the most critical information
needed for specialization decisions into the leaf node types and
a set of final metadata fields within each rope. The leaf node
types correspond to a broad classification of encodings, known as
code ranges in Ruby. They partition strings into those known to
consist only of 7-bit ASCII characters, those that have a valid byte
representation for their associated encoding (but at least one non-7-
bit ASCII character), and those with an invalid byte representation
for their associated encoding. The metadata fields can be used to
further divide ropes based on more refined criteria, such as the
width of a character, regardless of encoding. As a consequence,
we specialize our operations on a wide range of discriminators,
including empty vs. non-empty, fixed- vs. variable-width, UTF-8
vs. other variable-width encodings, rope node type, rope structure,
and rope equality.

3.2 Access to Compiler Optimizations
Sophisticated language implementations like TruffleRuby may use
dynamic compilers such as Graal with optimizations such as partial
escape analysis [17] and scalar replacement of aggregates, which
allow small objects that do not escape the compilation unit to avoid
heap allocation and exist only as temporary values. Strings with
their own potentially large character arrays are unlikely to be small
enough to meet the heuristics of these algorithms, but rope objects
with their small fixed size are. For instance, consider a composite
operation such as (stringA + stringB).slice(i,j). With a flat
representation, a compiler would have to allocate intermediate byte
arrays unless the size of stringA and stringB contain very small
byte arrays and their size is known at compile time. With ropes,
Graal is able to avoid allocations of all intermediary String and
Rope objects, regardless of the size of the input strings.

3.3 Operations
Concatenation and Addition. One of the starkest contrasts be-

tween a simple byte array-based string representation and ropes is
how string concatenation is handled. In its simplest form, the for-
mer requires the allocation of a new byte array large enough to hold
the contents of both strings and then those strings are copied to the
output buffer. This is a linear time operation that must keep two
copies of each argument in memory while the operation is being
performed. In contrast, ropes simply create a new ConcatRope node
with its child pointers referencing the two strings being concate-
nated; a constant time operation with a fixed amount of memory
overhead for the additional node.

Laziness pays off if a string performs a series of N concatenation
operations before the full list of bytes is needed. Here, the rope
approach only requires a single byte buffer allocation, filling the
buffer during a tree walk, whereas the byte array-based representa-
tion requires N allocations (1 per concatenation, modulo reductions
due to preallocated extra space).

Ruby supports string concatenation and addition, both of which
combine the contents of two strings. Whereas concatenation in
Ruby is destructive in the first operand, addition allocates a new

string whose contents are the result of the combination. We rep-
resent both operations with the same rope structure, as seen in
Figure 2, only modifying the rope reference in the string object for
concatenation. A ConcatRope node represents the lazy operation
and its metadata is populated as a union of its children’s values,
with Ruby-specific rules governing conflict resolution.

“garçon”
ConcatRope

“gar”

AsciiOnlyLeafRope

“çon”
ValidLeafRope

encoding UTF-8
byte length 7

character length 6
single-byte optimizable false

code range VALID

encoding US-ASCII
byte length 3

character length 3
single-byte optimizable true

code range 7BIT

encoding UTF-8
byte length 4

character length 3
single-byte optimizable false

code range VALID

Figure 2: String concatenation and addition are lazy operations rep-
resented by a ConcatRope.

By storing the metadata for all ropes, we allow string operations
to access that metadata uniformly across all rope types. For instance,
the character length of a ConcatRope is the sum of its children’s
character lengths. We opt to store the value in a field of the rope
instead of doing a full treewalk to determine the value. By doing
this everywhere, each child’s length must also be populated already,
making the eager calculation a simple addition operation.

Substring. Taking the substring of a string is a general operation
that can take on many forms. Ruby strings support character re-
trieval by index (which returns a string containing the character),
truncation, character iteration, regular expression matching, and
other operations that can be modeled as a variation of substring. In
its most general form, we perform the operation lazily and denote it
with a SubstringRope, as illustrated in Figure 3. In addition to the
metadata that all Rope instances contain, SubstringRope instances
also store a child reference to the string being substring’ed and a
byte offset into the child. As with ConcatRope, we eagerly calcu-
late all metadata for optimal performance, but only materialize the
substring’s bytes when called for.

“on”
SubstringRope

“garçon”

ValidLeafRope

byte offset 5
encoding UTF-8
byte length 2

character length 2
single-byte optimizable true

code range 7BIT

encoding UTF-8
byte length 7

character length 6
single-byte optimizable false

code range VALID

Figure 3: Taking a substring is generally a lazy operation repre-
sented by a SubstringRope.

In limited cases we opt to eagerly perform the substring opera-
tion, either in part or in whole. Taking a single-byte substring is
a frequent operation in Ruby. It is advantageous for us to forgo
the SubstringRope in favor of a LeafRope representing the single
byte. As an additional step, we cache the single-byte LeafRope
instances in lookup tables for the most popular Ruby encodings
(each sharing the same backing byte array), guaranteeing reference
equality for the results of all single-byte substring operations.
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When taking the substring of a rope that is itself an instance
of SubstringRope, we collapse the operation by adding the two
substring offsets together. The result is two distinct SubstringRope
nodes that share the same child, as shown in Figure 4. While tree
depth is not something we generally must be concerned with in
practice, by reducing the construction we limit the likelihood that
a small substring operation keeps a large intermediary tree live for
GC purposes.

“rç”
SubstringRope

“arçon”
SubstringRope

“garçon”

ValidLeafRope

“arçon”
SubstringRope

“rç”
SubstringRope

“garçon”

ValidLeafRope

byte offset 1
byte length 3

byte offset 1
byte length 6

byte offset 2
byte length 3

Figure 4: Taking the substring of a SubstringRope can be reduced
to a new SubstringRope of the original’s child by adding offsets.

Likewise, when taking the substring of a ConcatRope, we com-
pare the byte offset and byte length values of the substring operation
to each of the ConcatRope’s children. If the values cross the bound-
ary between the two children, then we insert a SubstringRope
whose child is the ConcatRope. Otherwise, we pick the appropriate
child and encounter one of two cases: 1) the substring matches the
range of the child exactly, in which case the result of the substring
operation is simply a reference to that child; or 2) the substring is
smaller than the child, and so we restart the substring operation
over the child, taking the child node’s type into account.

Repetition. Ruby includes a string “multiplication” operation that
returns a new string consisting of the receiver repeated N times. In
a byte array representation, this operation requires the allocation
of a new buffer of size |source | ×N bytes. The operation then copies
the source string’s byte array to the destination buffer N times.

With ropes, we have several ways to model the operation. We
can treat the result as a LeafRope and populate its bytes in the
same manner as a byte array-oriented approach would. However, it
may be more advantageous to make use of the inherent byte array
sharing of the source string. In this case we can treat the operation
as a series of N − 1 concatenations. For successive powers of 2 we
can even mirror one side of the concat tree to the other, further
maximizing our ability to share already constructed objects.

A third option is to treat the operation as a simple run-length en-
coding. Our RepeatingRope represents a lazy operation by storing
a reference to the source string and the repetition count. For many
Ruby string operations, such as character retrieval by index, the
RepeatingRope instance can operate as a lazy sequence, satisfying
the request without needing to reify a byte array for the string be-
ing represented. This approach is both memory and time efficient,
making repetition a constant-time operation instead of linear-time.

TruffleRuby specializes on both the metadata of the receiver
string and the value of N to choose between each of the imple-
mentations. While RepeatingRope performs well in the general
case, there are situations in which the other algorithms have an
advantage, such as small repetitions of single-byte strings.

Tree Flatten. We eliminate the need for multiple treewalks across
the entire rope by caching the resulting byte array at the root.
However, this still keeps the entire tree resident in memory. For
string interning we wish to store compact ropes and thus we have
an eager flatten operation to eliminate the tree entirely. When
flattening a LeafRope we can trivially return the rope. In all other
cases the result of the operation is a newly allocated LeafRope
instance, which by definition has its byte array populated.

TruffleRuby has a global rope table, consisting of only LeafRope
instances, which we use to share and de-duplicate ropes for string
literals and interned strings (i.e., Ruby symbols). Insertion and
retrieval from the table are slow-path operations and thus the over-
head of the flattening operation is not a concern for us. We trade
off CPU time for reducing the memory usage of the table.

Bytes. Much of the benefit of ropes derives from few string op-
erations ever needing direct access to the underlying bytes. By de-
ferring the construction of their byte arrays until necessary, ropes
avoid many costly memory allocation and copy operations. Ruby’s
String class, however, has methods that require direct byte access
such as retrieving a copy of the underlying byte array, walking the
bytes with an iterator, and retrieving an arbitrary byte by index,
amongst others.

For the purposes of byte-oriented operations, ropes can be parti-
tioned into two classes: those that have their internal byte array
populated and those without a computed byte array. By definition,
all LeafRope instances fall into the former category. By extension,
due to the flattening operations on the interned rope table (see Tree
Flatten above), all string literals fall into the former category. For
ropes with a populated byte array, we can provide a fast-path spe-
cialization that simply uses the byte array for bytewise operations.

For ropes without a computed byte array, we determine on a
per-operation basis whether it is cost-effective to populate the
byte array. Once populated, that rope can then proceed down the
fast path for subsequent bytewise operations. Alternatively, for
operations needing only a few bytes, we can walk the rope tree to
get bytes from the leaves and avoid the cost of flattening.

4 EVALUATION
In order to evaluate the impact of choice of string representation,
we compared our rope implementation against traditional byte
array approaches in benchmarks that stress critical Ruby string
operations. We wrote two micro benchmarks to measure string
equality and character retrieval by index in the presence of multi-
byte characters. We also benchmarked rendering a HTML template,
using the Ruby standard library template engine, ERB.

For our comparisons, we implemented a RopeBuffer thatmatches
the API of Rope but is backed by a mutable byte array. RopeBuffer
instances are always leaf nodes as any modifications to them can
be made in situ. We modified TruffleRuby to add RopeBuffer-
specialized variants of the benchmarked string operations.

We also compared the performance of TruffleRuby’s ropes to that
of strings in other Ruby implementations. While those comparisons
are illustrative of general Ruby string performance, we cannot make
claims about how well a rope representation would work in those
runtimes due to the innate differences in their virtual machines and
compilers. All experiments were run on a system with an Intel Core
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Figure 5: Comparison of Ruby runtime performance on themicro-
string-equal,micro-string-index and templating-erb benchmarks.

i7-4390K processor with 6 cores each at 3.4 GHz and 32GB of RAM,
running Ubuntu Linux 14.04. We evaluated MRI 2.3.0, TruffleRuby
0fcb104 with GraalVM 0.11, JRuby 9.0.5.0, and Rubinius 3.15. We
measured peak performance by running each benchmark in a loop
for warmup until they stabilized, and then recorded 10 iterations.
Reported errors are the standard deviation.

4.1 String Equality
Efficient comparison of strings is necessary for a high performing
Ruby runtime. While string equality is a concern for typical appli-
cation usages such as filtering user data and dictionary lookup, it is
also used frequently within Ruby for metaprogramming facilities.
For example, it is common to invoke methods using their string or
symbol name with the #send method. In extreme cases, method
names are constructed dynamically frommultiple sources [15]. Truf-
fleRuby uses inline caches [7, 11] to select methods to call based
on a name. The name is compared against cached names that have
been used before, which then yields the corresponding method.
When the method names are symbols, the names are interned and a
reference comparison is enough to check equality. When the meth-
ods names are strings, it is possible to take advantage of ropes to
enable a faster comparison. Specifically, when the ropes have been
constructed from the same sources, reference equality of either rope
objects or their backing byte arrays is enough to prove equality,
and avoid a byte-by-byte comparison.

Themicro-string-equal microbenchmark allocates two 10 million
character, 7-bit ASCII strings, and measures the runtime’s perfor-
mance in comparing them. In order to prevent byte array sharing
between the two strings, a mutation is made to one of them and
then reverted. The strings being compared are logically equivalent,
so there is no early bailout possible via mismatch detection.

Our ropes perform slightly worse than a byte array representa-
tion, as can be seen in the left-most graph in Figure 5. Due to the
mutations required to prevent byte sharing, the rope representa-
tion is a tree that reflects those operations, rather than a simple
LeafRope. When comparing non-leaf ropes, our implementation
first flattens the tree, which involves additional memory allocations.
It then compares the resulting arrays as if they were LeafRope
instances. The TruffleRuby rope buffer results illustrate how the
TruffleRuby runtime performs when comparing strings that begin
in the flat state.

4.2 Character Retrieval by Index
Themicro-string-index microbenchmark measures the performance
of Ruby runtimes in retrieving a character by index in the presence
of multi-byte characters. It adds together a 10-character ASCII
string with a single character, 3-byte wide UTF-8 string, and then
retrieves each character by index repeatedly.

The results in the middle graph of Figure 5 highlight the value
in making ropes encoding-aware. Our 6.8x speed-up over MRI is
largely due to ropes tracking both byte length and character length,
making bounds checking a very cheap operation. The semantics
of Ruby only allow the concatenation of compatible strings, so the
resulting string’s lengthmust be the sum of its children’s lengths – a
simple value to carry forward. Of the other runtimes, only Rubinius
tracks character length. The remainder must do a byte scan to
determine character length and do this for every character access.

Ropes only track a string’s character length, not the individual
character offsets. As such, determining where a variable-width char-
acter exists is also a linear operation for ropes. We minimize that
cost by exploiting the rope’s structure. In this case, the ConcatRope’s
children are an AsciiOnlyLeafRope and a ValidLeafRope. By
knowing the character length of each child and the index for the
character retrieval operation, we can decompose the rope and
choose the child that can best satisfy the request. Here, the indices
0 to 9 will route to the AsciiOnlyLeafRope where the request can
be satisfied optimally. Retrieving the character for index 10 will
route to the ValidLeafRope.

We note that if the rope is flattened, the performance differential
drops to 2x that of MRI. The choice of benchmark is intended to
mimic the behavior of real world templating applications, which
often are authored with 7-bit ASCII characters but combine user-
supplied input, such as a person’s name, in the resulting string.
In that situation, the rope structure is similar to the one in this
benchmark and the same decomposition optimization applies.

4.3 HTML Template Rendering
ERB is the template engine included in the Ruby standard library. It
processes a set of markup tags to handle Ruby expressions, which
are typically used to dynamically generate content to be substituted
into the document or to provide limited control flow to guide the
rendering process. Its inclusion in the standard library makes it a
popular first choice for many applications, such as HTML rendering.
To ensure consistent results across all runtimes, our benchmark
uses ERB from version 2.2.4 of MRI. The ERB processor takes a
template file as input and generates a fragment of Ruby code. In
a webserver, this Ruby code is then evaluated for each request to
render HTML. The templating-erb benchmark renders a 1420-bytes
HTML page by evaluating the Ruby code generated by ERB.

The generated Ruby fragment from ERB makes heavy use of
string concatenation, which is generally favorable to ropes. The
right-most graph of Figure 5 shows that TruffleRuby ropes are 9.4×
faster than MRI, rendering around 870 000 templates per second.
Our rope buffers execute at 2.7× the speed of MRI, suggesting the
difference in speed for ropes is in part due to using a generally faster
Ruby implementation, in addition to reduced byte array allocations.
JRuby without invokedynamic operates at 1.7× the speed of MRI.
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4.4 Summary
Ropes outperform buffers by a wide margin in the templating-erb
and micro-string-index benchmarks. Both ropes and rope buffers
have very similar performance for the micro-string-equal bench-
mark, even though the benchmark produces a sub-optimal situation
for ropes. While we are careful not to generalize those results to all
string operations, it is encouraging that the worst-case observed
rope performance is competitive with a byte array representation.

5 LIMITATIONS AND FUTUREWORK
In some cases it is beneficial to flatten ropes when they reach a
certain depth. Flattening can be an expensive operation, but yields
a LeafRope that provides better performance than a tree for some
string operations. We do flatten ropes in some cases such as when
a string is interned as a symbol, but we are unaware of any work
on sophisticated flattening heuristics.

In pathological cases a rope can degrade to a linked list of nodes
representing each character in a string. We plan to investigate ways
to either prevent or recover from this situation.

In our evaluation we have not considered the performance of
I/O operations, as our benchmarks only measure the construction
of strings. Future work could explore I/O operation specializations
that can output a rope without flattening it. Additionally, Ruby
strings have a dual purpose as a general byte buffer. We have not
considered this potentially write-heavy use case in our evaluation.

Strings in TruffleRuby are currently limited to 2 GB, just as if
they were backed by a Java byte[]. In follow-on work we would
like to investigate supporting larger strings with our ropes.

In future work we will also investigate memory and garbage
collection trade-offs between the two string representations.

6 RELATEDWORK
Other Ruby String Implementations. All other implementations

of Ruby use contiguous arrays of bytes to represent strings. Since
Ruby strings are mutable, each time a string literal is encountered
a new object must be created. Without careful consideration, this
can lead to memory bloat if strings are mostly read-only.

The reference Ruby implementation, MRI [12], is written in C
and uses a pointer and length field. In some cases the pointer can
be copy-on-write shared by referring to the same character array,
however this is only implemented for simple operations, such as
strings from the same literal and simple substrings.

JRuby [13] is implemented in Java. However it does not re-use
the standard Java String data type because Ruby strings are mu-
table and converting every external string to UTF-16 (the internal
encoding of Java String) would be expensive in a language support-
ing strings with different encodings. Instead JRuby uses a byte[],
which it encapsulates in a ByteList class. JRuby’s byte lists support
copy-on-write for literals and substrings but do not support any
lazy operations such as concatenation. As JRuby uses a standard
Java byte[], the length of strings are limited in JRuby to 2 GB.

Rubinius [14] is an implementation of Ruby using a VM in C++
but with much of the Ruby core library implemented in Ruby. Like
MRI, Rubinius uses copy-on-write for string literals and for cases
where one string is replaced with another. However, Rubinius does
not share character data for substring operations.

Ropes in Other Language Implementations. PyPy is a high-perform-
ance implementation of the Python language using a meta-tracing
just-in-time compiler [2]. PyPy has concatenation ropes, and earlier
versions experimented with additional rope operations such as lazy
substrings, but useful speedups were not observed and the more
complex ropes were removed [4]. Python strings are immutable
and idiomatic concatenation of long strings is often achieved by
creating an array and then joining in a single operation, so the
benefits of ropes may not be as clear in Python as they are in Ruby.
Also, this work was prior to the meta-tracing JIT used in modern
versions of PyPy, so interaction with compiler optimizations such
as allocation removal were not considered.

Graal.js [18], a JavaScript implementation built on GraalVM [19],
has a lazy concatenation string object, but no other rope operations.
Other JavaScript implementations have similar string implementa-
tions. V8 calls concatenation ropes ConsString, and SpiderMonkey
has JSRope.

Many language implementations implement substrings as a view
into a shared character array. Java did this until 7u6, when it was
changed to avoid potential memory leaks, which is an issue we do
not address in this paper. Implementations that support ropes for
concatenation, such as V8, will flatten a concatenated rope before
sharing the character array.

Java, JavaScript, and Python have simpler string encoding se-
mantics than Ruby with just one or two explicit encodings used.
However implementations may use additional encodings internally.
For example, V8 has two-byte strings as the JavaScript standard
describes but also one-byte strings, and SpiderMonkey has opti-
mizations including inline strings that do not allocate a separate
character array. Java 9 now has single-byte compact strings [3].

7 CONCLUSION
We have evaluated the performance of ropes as a string representa-
tion for the Ruby programming language. Despite the incongruity
of Ruby strings being mutable while ropes are immutable, we have
found worst-case performance of ropes on some critical string
operations to be competitive with a traditional byte array repre-
sentation. We have demonstrated that ropes can have a significant
performance advantage over byte arrays. Rope performance does
vary with its structure due to our specialized methods in Truf-
fleRuby, but we generally saw a performance range of 0.9× – 9.4×
of MRI for representative benchmarks.

By tailoring our rope implementation to Ruby’s semantics – no-
tably making our ropes encoding-aware – we have reduced some
core linear time operations to constant time. E.g., by tracking char-
acter length in addition to byte length we can perform bounds
checking without having to do a full byte scan, regardless of the
string’s associated encoding.

The immutable nature of ropes allows us to freely share refer-
ences, which makes them suitable for inline caching in the Truffle
framework. Immutable metadata in the rope structure also makes
it easier for the Graal compiler to perform constant-folding.

Our evaluation has been so promising that ropes are now how
we implement Ruby strings in release versions of TruffleRuby.
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